
Executive	Summary	
For	the	final	project	in	MIS	507,	our	team	wrote	Java	code	and	used	four	software	design	
patterns	to	develop	a	game	system	specifically	for	elementary	schools.		This	game	system	
allows	elementary	students	(players)	to	play	either	a	typing	game	or	a	mathematics	game.		
In	the	typing	game,	the	student	can	practice	by	typing	the	home	row	keys	or	by	typing	on	
all	of	the	keys	to	create	general	paragraphs.		In	the	mathematics	game,	the	student	can	
practice	addition,	subtraction,	multiplication,	and	division	problems.		After	the	student	
(player)	completes	a	game,	their	score	is	saved	along	with	their	profile.		The	next	time	the	
student	(player)	plays	the	game	(typing	or	mathematics)	they	compete	against	themselves	
to	try	to	beat	their	previous	high	score	for	that	game.		If	their	score	is	higher,	they	win	and	
get	a	new	high	score.		The	overall	objective	of	this	game	system	is	to	help	elementary	
students	improve	their	typing	and	math	skills	by	playing	the	games	we	created.		A	high	
level	outline	of	the	entire	document	is	shown	below.	
	
Section	1	 Provides	an	explanation	about	why	and	how	the	game	system	was	developed	
	 	 specially	for	Elementary	Schools.	
	
Section	2	 Contains	the	UML	diagram	for	the	game	system	and	explains	why	the		 	
	 	 Observer,	Strategy,	Template,	and	Singleton	design	patterns	were	selected.	
	
Section	3	 Explains	a	specific	use	case:	a	student	playing	the	typing	game	and	then		
	 	 beating	their	previous	high	score	for	the	game.		The	environmental	details		
	 	 are	explained	as	the	typing	game	is	played.	
	
Section	4	 Provides	a	summary	of	the	lessons	learned	and	the	specific	takeaways	that		
	 	 our	team	gained	from	the	process	of	designing	and	writing	the	code		 	
	 	 necessary	to	complete	the	game	system.	
	
Table	1:	Team	members	and	their	role	on	the	team.	
	

Name	 Role	on	Team	 Email	

Kory	Chinn	 Final	Report,	Game	Coding	and	Testing	 knc1@email.arizona.edu	

Karan	Dhamija	 Business	Logic	creation	and	Demo	
Video	Creation		 karandhamija@email.arizona.edu	

Po-Yi	Du	 Coding,	Business	Logic	creation,	
Testing,	and	UML	Diagram	creation	 pydu@email.arizona.edu	

Derek	Gourley	 Final	Report,	Game	Coding	and	Testing	 gourleyd@email.arizona.edu	

Yazan	Abu	Hijleh	 Coding,	Business	Logic	creation,	
Testing,	and	UML	Diagram	creation	 yna@email.arizona.edu	

Tso-Ming	Liu	 Coding	and	Demo	Video	creation	 tsomingliu@email.arizona.edu	



Section	1	-	Introduction	
The	game	system	that	we	are	developing	was	designed	to	fit	in	with	the	current	elementary	
school	system	and	this	served	as	the	business	scenario	that	our	team	had	in	mind	as	we	
created	the	business	logic	and	wrote	the	Java	code.	
	
As	technology	becomes	more	prevalent	in	elementary	schools	within	the	United	States,	our	
team	wanted	to	develop	a	game	system	that	could	be	integrated	with	the	current	
curriculum,	while	being	flexible	enough	to	adapt	to	the	ever	frequent	changes	to	the	
curriculum	that	occur	from	year	to	year.		In	addition,	the	source	code	for	the	game	system	
was	written	in	such	a	way	that	it	could	easily	be	adapted	to	meet	the	specific	curriculum	
requirements	for	each	school.			
	
The	need	that	this	game	system	will	fill,	is	that	it	will	provide	an	easy	way	for	teachers	to	
teach	math	and	typing	skills,	all	while	making	it	fun	and	engaging	for	students.		In	talking	
with	elementary	school	teachers,	we	continuously	heard	that	it	is	difficult	to	keep	the	
attention	of	the	students	for	long	periods	of	time.		We	also	heard	that	teachers	were	having	
difficulty	adjusting	to	the	push	for	technology	to	be	incorporated	in	everyday	use	in	the	
classroom.		After	hearing	what	the	elementary	school	teachers	had	to	say,	we	set	out	to	
create	a	game	system	that	would	meet	the	needs	of	the	teachers	and	the	curriculum	as	well	
as	to	try	to	keep	the	attention	of	the	students.			
	
After	our	team	had	identified,	researched,	and	explored	the	target	market	and	business	
scenario	that	we	would	be	developing	our	game	system	for,	we	began	exploring	software	
design	patterns.		School	systems	have	constantly	evolving	requirements	for	teaching	and	
our	team	was	specifically	looking	for	software	design	patterns	that	could	be	used	in	a	way	
to	make	it	easy	to	make	changes	to	the	games	themselves	as	the	curriculum	changed.		In	
addition,	it	is	important	to	design	the	game	system	in	a	way	that	the	score	of	each	student	
(player)	can	have	their	scores	recorded	and	saved	for	the	end	of	the	year	where	teachers	
need	to	assess	and	document	the	progress	that	each	student	made	during	the	year.	
	
The	benefit	of	this	game	system	would	be	that	it	would	help	teachers	to	follow	and	track	
the	progress	of	each	student	in	regards	to	their	typing	and	mathematics	skills	as	the	school	
year	progresses.		In	addition,	it	would	provide	a	leaderboard	that	allows	the	teacher	to	
better	understand	which	students	(players)	are	doing	well	and	also	show	those	students	
who	might	need	more	practice	or	special	instruction	to	improve	either	their	typing	or	
mathematics	skills.		The	end	result	is	a	game	system	that	helps	teachers	teach	typing	and	
mathematics,	all	while	recording	each	students	(players)	scores	and	making	it	fun	and	
entertaining	for	students.				
	
	
	
	
Section	2	-	System	Design	
The	UML	diagram	that	we	created	for	our	game	system	is	shown	in	figure	1	below.		Our	
team	first	created	the	UML	diagram	and	then	referenced	it	to	write	the	Java	skeleton	code,	
which	we	then	filled	in	to	finalize	the	game	system.	



Figure	1:		UML	diagram	for	the	game	system.	
	

	
	
	
	
The	game	system	was	developed	with	the	primary	use	case	being	to	help	teachers	in	
elementary	schools	in	the	United	States	teach	typing	and	mathematics	to	students.		In	the	
UML	diagram	shown	in	figure	1	above,	the	game	system	utilizes	four	software	design	
patterns:	Observer,	Strategy,	Template,	and	Singleton.	
	



Design	Patterns:	
The	observer	software	design	pattern	was	used	in	the	game	system	to	handle	any	changes	
to	the	leaderboard.		If	the	player’s	score	is	better	than	their	previous	score,	the	Observer	
software	design	pattern	is	responsible	for	updating	the	score	for	each	player.		The	observer	
in	this	case	is	the	players	profile	and	the	observable	is	the	leaderboard.	
	
The	strategy	software	design	pattern	was	used	within	the	game	system	to	make	changes	to	
the	difficulty	of	the	game	and	to	switch	between	the	games	(currently	two).		In	addition,	the	
strategy	design	pattern	was	used	to	allow	for	new	games	to	quickly	be	added	or	removed	
without	requiring	any	major	code	revisions.		We	expect	that	with	the	often	rapid	changes	to	
each	elementary	schools	curriculum,	that	the	use	of	this	design	pattern	will	be	critical	to	
quickly	extending	and	adapting	the	type	of	games	offered	both	now	and	in	the	future.	
	
The	template	software	design	pattern	was	used	in	the	game	system	to	standardize	the	
process	of	setting	up	a	game:	1)	Apply	the	difficulty,	2)	Play	the	game,	and	3)	Return	the	
players	score.		The	usage	of	the	template	software	design	pattern	is	helpful	now	even	with	
two	games,	but	will	also	become	increasing	more	useful	in	the	future	when	additional	
games	are	added	in	order	to	adapt	to	changes	in	each	elementary	schools	curriculum.	
	
The	singleton	software	design	pattern	was	used	in	the	game	system	to	ensure	that	only	a	
single	instance	of	both	the	game	manager	and	the	save	manager	classes	exist	as	well	as	to	
ensure	that	only	a	single	game	is	created	at	a	time.		In	addition,	the	usage	of	the	singleton	
software	design	pattern	will	help	to	protect	the	integrity	of	the	files	and	objects	used	by	the	
game	system.	
	
	
Key	Features:	
Each	of	the	design	patterns	used	in	the	game	system	were	selected	to	make	the	entire	code	
base	follow	the	“Open-Closed”	principle.		The	goal	of	this	principle	is	to	write	code	that	is	
open	for	extension	and	closed	for	modification.		Given	that	our	team	developed	a	game	
system	specifically	for	elementary	schools,	an	environment	where	the	teaching	curriculum	
is	rapidly	changing,	this	principle	will	be	especially	important	in	allowing	for	quick	changes	
to	be	made	to	the	game	system	in	order	to	prevent	the	games	from	becoming	obsolete.	
	
The	game	system	currently	has	two	games:	typing	and	mathematics,	but	the	entire	system	
was	designed	to	be	extensible	so	that	each	individual	school	could	edit	or	add	additional	
games	that	are	tailored	to	specifically	meet	the	requirements	of	their	curriculum.	
	
	
	
	
Section	3	-	System	Implementation	
Implementation	of	our	game	software	was	completed	using	an	object-oriented	design	in	
Java	by	utilizing	the	design	patterns	described	in	Section	2.		The	code	was	split	amongst	
team	members	and	each	of	the	team	members	were	responsible	for	the	implementation	of	
2	or	more	classes	in	our	UML	diagram.		The	team	used	GIT	for	versioning	control	and	



created	branches	from	our	Bitbucket	repository	to	develop	our	individual	sections.		These	
features	were	then	merged	back	into	our	master	branch.		The	actual	development	was	
completed	using	the	integrated	development	environment,	Eclipse.	
	
To	demo	and	test	the	game	system,	we	created	a	use	case	where	a	student	named	Yazan	
plays	the	typing	game.		Figure	2	below	shows	Yazan	playing	the	game	(on	hard	difficulty)		
and	Figure	3	below,	shows	the	score	he	got	as	well	as	some	in-game	metrics	related	to	the	
typing	game	Yazan	just	completed.		After	Yazan	has	finished	playing	the	typing	game,	the	
game	system	then	checks	to	see	if	his	scores	are	better	than	previous	scores	that	he	has	
gotten,	if	they	are	better,	then	the	leaderboard	gets	updated.		If	Yazan	decided	to	play	the	
math	game,	the	results	would	be	similar,	except	instead	of	typing	questions,	he	would	get	
asked	math	questions	(addition,	subtraction,	multiplication,	and	division).	
	
	
Figure	2:		Yazan	is	playing	the	typing	game.	
	

	
	
	
Figure	3:		Yazan	has	finished	the	typing	game	and	gets	information	about	how	he	played.	
	

	



Figure	5:		Leaderboard	updating.	
	

	
	
	
	
	
Section	4	-	Lessons	Learned	
For	this	project,	our	group	consisted	of	team	members	with	varying	levels	of	coding	
experience.		From	the	beginning	of	the	term,	our	team	set	up	weekly	meetings	to	discuss	
the	project	for	this	class	and	to	also	review	the	materials	covered	in	lecture.		Looking	back,	
starting	early	on	this	project	was	critical	to	developing	a	UML	diagram	and	skeleton	code	
that	was	later	used	as	an	outline	to	complete	this	project.		For	this	project	our	team	used	
GIT,	which	was	extremely	helpful	to	have	for	this	project	and	made	collaboration	very	easy.		
We	specifically	used	Atlassian	BitBucket	and	combined	it	with	the	Eclipse	Desktop	
Software,	to	create	a	development	environment,	which	made	it	easy	to	write	code,	push	
changes,	and	pull	new	modifications	made	by	other	team	members.	
	
During	the	class	this	term	we	learned	about	the	common	software	design	patterns	and	how	
they	can	be	used	to	create	source	code	that	follows	the	“Open-Closed”	principle,	which	we	
also	talked	about	in	class.		We	also	learned	that	software	design	patterns	can	be	thought	of	
as	an	advanced	form	of	object	oriented	programing,	the	goal	of	which	is	to	develop	source	
code	that	is	open	for	extensibility,	but	closed	for	modification.		By	learning	these	software	
design	patterns,	we	were	able	to	write	the	source	code	for	the	game	system	in	a	way	that	
allows	for	easy	modification	in	the	future,	even	by	programmers	other	than	ourselves.		The	
key	takeaway	from	all	of	this	is	the	increased	level	of	comfort	that	all	of	the	team	members	
have	when	it	comes	to	writing	code	in	a	format	that	could	be	used	in	a	production	
environment.		Before	this	class,	the	majority	of	the	code	that	our	team	members	wrote	
were	for	ourselves	and	not	really	designed	to	be	used	by	other	programmers.		This	project	
gave	us	experience	using	common	software	design	patterns	that	other	programmers	will	
be	familiar	with	and	these	programmers	would	be	able	to	understand	and	recognize	the	
software	design	patterns	used	when	they	saw	the	source	code.		The	end	result	is	code	that	
can	be	easily	modified	and	adapted	as	future	requirements	change	and	as	the	project	gets	
handed	down	to	different	programmers	as	time	goes	on.	
	



A	few	other	key	takeaways	from	this	project	that	we	learned	and	will	use	in	the	future	have	
to	do	with	starting	early	and	using	software	that	allows	for	real	time	collaboration	either	
remote	or	in	person.		By	starting	early,	our	team	was	able	to	put	together	a	well	thought	
out	software	design	that	resulting	in	making	it	easier	to	write	the	code.		In	addition,	
starting	early	allowed	us	to	make	several	revisions	and	iterations	on	our	initial	proposal.		
We	were	able	to	take	the	time	needed	to	develop	a	good	end	product,	without	needing	to	
rush	at	the	end.		Setting	up	regular	meetings	is	not	easy	with	how	busy	the	MIS	program	
can	be,	but	it	is	an	important	takeaway	for	when	we	enter	the	workforce.	
	
Our	team	also	utilized	several	pieces	of	software	that	allowed	for	real	time	collaboration,	
Google	Drive,	Google	Docs,	and	GIT.		All	of	these	tools	allowed	us	to	work	in	parallel,	by	
allowing	us	to	see	the	changes	that	any	of	the	other	teammates	made.		This	was	extremely	
important	when	it	came	to	writing	the	code.		Given	how	busy	everyone’s	schedule	was,	it	
was	necessary	to	use	tools	that	would	allow	for	the	team	members	to	work	on	their	own	
schedule	and	prevent	them	from	doing	the	same	work	as	another	member.		These	tools	
allowed	for	everyone	in	the	team	to	know	exactly	what	everyone	else	was	doing	or	had	
done.	
	
Overall,	there	were	many	more	takeaways	from	this	course	and	this	project	that	we	
learned.		In	this	report	we	just	highlighted	a	few	of	the	lessons	learned	that	we	identified	at	
this	time.		In	the	future,	when	we	are	working	out	in	the	industry,	we	are	sure	that	there	
will	be	many	more	lessons	learned	from	this	course	that	will	become	apparent	when	we	
are	doing	this	work	full	time.		In	summary,	our	team	learned	about	coding,	design	patterns,	
collaborative	software,	and	also	how	to	work	as	a	team,	which	are	all	things	that	will	be	
absolutely	necessary	to	be	successful	in	the	industry.		


