
	

	

Final	Project	Report	
	

	
	

Predicting	Pokémon	spawns	within	PokémonGo		
	
	
	
	
	
	

Team	Ultra	
	

MIS	586	
	
	
	
	

	
	 	

	

Yazan	Abu	Hijleh	
	

Baoye	Zhao	
	

Menglu	Pei	
	

Derek	Gourley	
	

Po-Yi	Du	
	

Yunfei	Wei	
	
	
	
	
	
	
	
	



Abstract	
	
Motivation	
Augmented	Reality	and	Virtual	Reality	are	presented	to	be	the	new	frontiers	for	the	future	of	gaming.		
PokémonGo	was	the	first	game	to	bring	Augmented	Reality	to	cheap	and	commonly	available	consumer	
devices.		Virtual	Reality	typically	requires	expensive	equipment	making	it	cost	prohibitive	to	consumers.		All	
of	this	helps	to	explain	the	massive	popularity	of	PokémonGo,	given	that	it	provides	a	similar	experience	to	
Virtual	Reality,	but	the	game	runs	on	a	device	that	the	consumer	most	likely	already	owns	--	their	phones.	The	
accessibility	and	popularity	of	this	game	created	a	wealth	of	data	that	we	want	to	explore	and	better	help	
players,	such	as	ourselves,	enjoy	the	game.	
	
Problem	Statement	
Given	the	popularity	and	intensity	of	the	PokémonGo	augmented	reality	game,	players	around	the	world	have	
been	working	together	since	the	game	launched	to	learn	as	much	as	they	can	about	the	game.		Players	have	
been	working	to	find	ways	to	gain	a	competitive	advantage	and	maximize	the	time	they	spend	playing.	The	
most	frequent	question	among	new	and	veteran	players	is	“where	can	I	find	this	Pokémon?”	or,	phrased	
differently,	“What	Pokémon	can	I	expect	to	find	near	this	location?”	
	
Approach	
Our	team	set	out	to	use	both	Network	Science	and	Machine	Learning	to	gain	new	insights	about	the	
PokémonGo	to	help	players	optimize	the	time	they	spend	playing	the	game.	We	utilize	information	about	a	set	
of	observations	recorded	throughout	a	single	year,	and	derive	network	metrics	and	co-occurrence	measures	
to	create	a	data	set	that	will	be	fed	into	a	machine-learning	algorithm.	The	purpose	of	the	algorithm	is	to	
predict	what	type	of	Pokémon	is	likely	to	spawn	given	some	information	about	the	desired	type	and	the	
surrounding	Pokémon.	The	Hadoop	MapReduce	technique	is	also	leveraged	to	pre-process	our	data	to	
generate	useful	attributes.	
	
Results	
We	utilized	the	network	analysis	to	explore	the	modularity	of	our	dataset.	We	then	calculate	a	new	network	
metric,	the	Class	Modularity	Majority	(CMM)	for	every	observation	(row)	in	our	dataset.	To	build	the	
prediction	model,	two	machine-learning	algorithms,	Naive	Bayes	and	C5.0	Decision	Tree,	are	implemented	in	
this	project.	We	also	include	the	new	network	metric	in	our	models	as	an	attribute.	As	a	result,	C5.0	holds	a	
much	better	result,	in	term	of	prediction	accuracy,	comparing	to	Naive	Bayes	and	the	majority	baseline	of	the	
dataset.	This	model	tends	to	predict	some	rare	Pokémon’s	with	higher	accuracy	than	the	most	common	ones,	
which	is	more	useful	for	the	players.	Also,	latitude	and	longitude	are	the	most	important	attributes.	
	
Conclusions	
The	top	attributes	to	affect	Pokémon	spawns	were	found	to	fit	into	3	groups:	Pokémon,	Player,	and	Place.	The	
findings	incorporated	network	metrics	based	on	co-occurrence	and	modularity	analysis,	and	also	relied	on	
geographical	and	population	data.	The	findings	confirm	certain	long	held	beliefs	in	the	player	community,	
such	as	those	about	co-occurring	Pokémon	having	related	types,	and	the	population	and	geographic	features	
affecting	spawn	rates.	More	detailed	data	that	covers	a	longer	period	of	time	can	be	used	to	increase	the	value	
of	network	measures	and	accuracy	of	the	model.	
	
	
	
	 	



Introduction	
	
PokémonGo	is	a	popular	mobile	game	for	iOS	and	Android	that	has	65	Million	active	players	from	around	the	
world.	This	game	was	the	first	major	Augmented	Reality	(AR)	application	to	come	to	smartphones	when	it	
launched	on	July	6th,	2016.	Soon	after	its	launch,	it	reached	5	million	daily	active	users,	which	spend	an	
average	of	26	minutes	playing	the	game	each	day	(1).	Since	its	launch,	the	game	has	been	downloaded	more	
than	750	million	times	(1).	
	
Players	of	this	game	walk	around	with	their	smartphones	in	real	life	to	try	and	catch	Pokémon	in	the	wild	or	
battle	them	in	gyms.	The	game	accomplishes	this	by	integrating	Google	maps	with	the	GPS	and	camera	from	a	
smartphone.	By	combining	all	of	this	together,	an	augmented	reality	experience	is	developed	which	mimics	
the	popular	Pokémon	TV	show	from	the	90’s.	Often,	new	players	are	coached	by	more	experienced	players,	
and	players	who	tend	to	play	in	groups,	where	they	work	together	to	learn	common	tips	and	rules	for	finding	
different	types	of	Pokémon.	
	
	
	

Related	Work	
	
Since	the	game's	inception,	players	(with	technical	skills)	around	the	world	have	been	working	hard	to	
reverse	engineer	the	game.		Given	that	PokémonGo	was	the	first	major	game	of	it’s	type,	players	immediately	
became	interested	in	the	code	and	logic	that	powers	both	the	server	side	and	the	client	side,	given	that	both	
must	work	together	to	make	the	game	work	successfully.		As	a	result	of	all	of	the	work	to	reverse	engineer	the	
game,	two	major	websites	have	been	developed	for	players	to	share	information	related	to	the	inner	
workings	of	the	game	or	just	to	share	tips	they	have	discover	by	playing	the	game.		The	most	prominent	
website	is	the	“The	Silph	Road”	(2),	closely	followed	by	“The	Silph	Road	Subreddit”(3).	
	
Each	time	a	new	update	is	released	to	the	public,	players	quickly	reverse	engineer	the	code	and	then	post	
their	findings	to	the	Silph	Road	website	(2)	and	the	subreddit	(3).		In	addition	to	this,	players	also	share	
information	about	the	location	Pokémon	and	where	they	tend	to	be	spawning.		Every	two	weeks,	a	nest	
migration	occurs	and	the	Pokémon	nests	switch	locations.		A	nest	is	a	place	in	which	a	Pokémon	and	copies	of	
it	are	likely	to	spawn	nearby,	similar	to	a	nest	of	animals	in	the	wild.		Another	important	role	of	these	
websites	that	relates	especially	to	this	report,	is	the	basic	analytics	performed	and	shared	on	these	sites.		
Players	will	share	graphs	they	have	made,	summary	statistics,	and	results	from	a	day's	worth	of	playing	the	
game.		
	
Previous	analytic	work	has	also	been	completed	by	using	Watson	Analytics	(4),	to	visually	explore	trends	in	
Pokémon	spawns	and	the	frequency	of	Pokémon	types.		All	of	this	beginning	analytics	work	has	already	been	
helpful	to	both	the	serious	and	casual	players.		Our	plans	to	expand	upon	the	previous	analytics	by	integrating	
the	analytical	techniques	we	have	learned	this	term.		We	will	perform	Network	Science	as	well	as	create	and	
test	several	predictive	algorithms	using	Machine	Learning.		The	end	goal	will	be	to	provide	additional	and	
new	insights	into	the	popular	PokémonGo	that	players	will	be	able	to	use	to	guide	the	way	they	play	the	game	
to	maximize	their	time	spent	playing	the	game.	
	
	
	

Project	Objectives	
	
For	this	project,	our	team	is	interested	in	trying	to	learn	more	about	the	spawn	locations	and	spawn	times	of	
Pokémon	within	the	game.	Players	around	the	world	try	to	guess	and	communicate	with	each	other	through	
social	media	to	share	the	locations	of	Pokémon	that	spawn	near	them.	A	major	part	of	the	game	is	
communication	and	teamwork	among	the	players	of	the	PokémonGo	game	in	order	to	help	everyone	catch	all	
of	the	Pokémon	in	the	game.	



Our	team	saw	this	project	as	an	opportunity	to	try	to	understand	the	factors	that	influence	a	Pokémon’s	
spawn	time	and	location	in	order	to	predict	this	in	the	future.	In	addition	to	this,	our	team	wants	to	better	
understand	the	co-occurrence	of	Pokémon	spawns	within	the	game.	For	instance	if	a	certain	Pokémon	
spawns,	which	other	Pokémon	would	be	most	likely	to	spawn	next	to	it.	We	believe	that	Network	Science	can	
be	used	to	help	us	better	understand	Pokémon	co-occurrence	and	also	produce	useful	derived	data	that	could	
be	fed	into	a	machine-learning	algorithm	that	predicts	Pokémon	spawn	types.	
	
This	report	will	specifically	focus	on	the	Network	Science	techniques	that	our	team	used	to	better	understand	
the	co-occurrence	of	Pokémon	spawns,	and	how	that	data	was	used	to	teach	a	machine-learning	algorithm.	
	
	
	

Dataset	
	
For	this	report,	our	team	used	two	datasets	from	Kaggle:	“Predict’em	All”	(5)	and	“Pokémon	Stats”	(6).		Given	
that	the	two	datasets	used	by	our	team	came	from	Kaggle,	the	datasets	were	relatively	clean	already	and	the	
integrity	of	the	data	was	good.		Our	team	had	to	do	some	work	with	both	R	and	SQL	to	get	the	data	into	a	
usable	format,	in	which	we	could	conduct	the	analyses	that	we	set	out	to	complete.	
	
For	the	“Predict’em	All”	(5)	dataset,	the	data	includes	50	fields	for	attributes	such	as	the	type	of	Pokémon,	the	
date,	the	location,	information	about	nearby	gyms	and	PokéStops,	and	also	weather	data.	Roughly	150	fields	
for	Pokémon	co-occurrence	(multiple	spawns)	information	are	also	included.	Additional	fields	were	added	
about	each	Pokémon’s	name,	type	and	stats.	
	
For	the	“Pokémon	Stats”	(6)	dataset,	the	data	contains	some	basic	but	crucial	features	of	Pokémon,	such	as	
Pokémon	name,	type,	is	legendary	or	not,	generation,	etc.	This	dataset	can	be	linked	with	our	basic	dataset	
through	PokémonID,	which	can	be	used	to	improve	our	hypothesis	with	more	features.	We	dropped	the	
statistical	data	such	as	HP	and	attack	power	in	this	dataset	because	they	are	not	relevant	to	the	PokémonGO	
game.	
	
	
	

Data	Processing	
	
The	two	datasets	from	Kaggle	were	loaded	into	the	R	statistical	software	(7)	and	all	of	the	attributes	for	each	
dataset	were	combined	using	the	merge	function	within	R	on	the	PokémonID	attribute.	We	conducted	a	
preliminary	analysis	on	this	data	to	decide	the	scope	and	filtering	of	the	data.	Next,	the	filtered	data	was	put	
into	Gephi	for	further	pre-processing:	1)	we	created	modularity	classes	and	other	network	metrics	2)	
conducted	more	preliminary	analysis	and	3)	created	co-occurrence	graphs.	We	then	passed	the	data	through	
Hadoop	to	create	a	new	network	metric,	called	co-occurrence	modularity	majority.	This	derived	data	was	
then	recombined	into	the	original	set	and	passed	into	a	machine	learning	algorithm,	as	described	in	more	
detail	later	in	this	report.	
	
	
	
	 	



Data	Exploration	
	
Since	our	objective	is	to	learn	more	about	the	occurrence	of	Pokémon	in	certain	location,	we	investigated	the	
Pokémon	occurrence	within	different	cities,	which	is	shown	in	figure	1	below.	
	
	
Figure	1:		Bar	Chart	For	Pokémon	Occurrences	In	Cities.	
	

 
 
 
We	discovered	that	the	Pokémon	occurrence	in	our	dataset	is	strongly	skewed	to	certain	cities	while	the	
overall	average	is	98.	Since	all	of	them	appeared	to	be	relatively	big	cities,	we	suspect	the	skewness	resulted	
from	each	city’s	population	size.	Thus,	we	manually	collected	the	population	data	for	eight	major	cities	(New	
York,	Chicago,	Prague,	LA,	London,	Rome,	Mexico	City,	and	Paris),	and	ran	a	correlation	analysis	between	the	
population	data	and	city	occurrences.	The	result	indicated	a	0.21	positive	correlation,	which	meant	big	cities	
having	more	Pokémon	occurrence	might	only	be	a	general	phenomenon.		
	
As	such,	cities	with	more	population	do	not	necessarily	have	more	Pokémon	occurrences.	The	observations	
are	so	sparse	in	some	of	the	cities	(for	example,	there	is	only	one	observation	for	the	entirety	of	Cairo,	a	city	of	
around	10	million	people)	that	it	makes	no	sense	to	include	the	cities	in	our	analysis,	because	there	are	not	
enough	observations	to	give	a	reliable	or	useful	recommendation.	
	
Roughly	82%	of	the	observations	are	in	the	top	15	cities	compared	to	72%	in	the	top	10,	which	goes	to	say	
just	how	concentrated	the	data	is.		Table	1	below,	shows	the	observation	counts	for	a	selection	of	top	cities.	
We	decided	to	discard	data	from	the	cities	where	there	are	fewer	observations	(limiting	our	scope	to	the	top	
15	cities),	and	this	did	not	affect	the	reliability	of	our	data.	
	
	
	 	



Table	1:		Selected	Observations	of	Pokémon	Occurrences	in	Top	Cities.	
	

City	 Count	 City	 Count	

New	York	 54,177	 Stockholm	 9,786	

Chicago	 32,046	 Zurich	 6,563	

Prague	 28,000	 Edmonton	 6,007	

Los	Angeles	 22,108	 Oslo	 5,910	

London	 19,094	 Denver	 5,619	

Rome	 15,883	 Phoenix	 5,429	

Mexico	City	 12,672	 Ljubljana	 5,361	

Paris	 11,210	 	 	

	
	
	
	
	
	

Refining	The	Scope	of	The	Problem	
	
To	get	a	better	idea	of	the	geographic	layout	of	Pokémon	occurrences,	our	team	used	Google	Earth	and	the	
location	data		(Latitude	and	Longitude)	for	Pokémon	spawns	to	generate	the	map	in	figure	2	below.	The	map	
shows	the	overall	count	number	of	Pokémon	occurrences.	Different	colors	represent	different	count	number	
on	the	map.	We	use	4	colors	to	label	the	number	of	occurrences.	In	detail,	blue:	0-9;	yellow:	10-99;	red:	100-
999;	pink:	1000-9999;	purple:	more	than	9999.	
	
Europe	and	North	America	had	the	most	occurrences	in	the	dataset.	Almost	each	country	in	these	continents	
has	a	sizable	amount	of	Pokémon	spawns.	For	each	continent,	it	seems	occurrences	are	concentrated	in	the	
center.	
	
Second-most	Pokémon	occurrences	are	in	the	cities	of	Southern	Asia.	Most	of	northern	Asia	has	no	Pokémon	
because	the	app	service	is	not	provided	or	allowed	there.	However,	most	of	southern	areas	like	Hong	Kong,	
Singapore,	Thailand,	Philippines,	Japan	and	some	related	islands	have	many	Pokémon	occurrences.	
The	Pokémon	distribution	in	Latin	America	is	somewhat	spread	out.	The	Pokémon	are	located	mostly	in	
Brazil,	Argentina	and	Peru.	Large	city	(like	capitals)	seem	to	have	the	largest	number	of	Pokémon	
occurrences.	Africa,	Central	Asia	and	Oceania	are	almost	empty	when	it	comes	to	Pokémon	occurrences,	at	
least	when	looking	at	our	dataset.	
	
	
	
	
	
	
	
	
	
	



Figure	2:		Map	of	Pokémon	spawns.	
	

 
	
	
	
	
	
	

Network	Analysis	
	
Our	team	had	access	to	two	datasets:	one	containing	the	occurrences	of	Pokémon	around	several	major	cities,	
and	the	other	containing	metadata	about	each	of	the	150	Pokémon.	The	first	step	was	to	combine	these	data	
sets	on	the	Pokémon	ID,	which	denotes	one	of	the	150	Pokémon.		This	resulted	in	a	labeled	set	of	Pokémon	
observations,	each	with	150	possible	connections	to	other	co-occurring	Pokémon.	
	
These	co-occurrences	were	transformed	into	an	edge	list	between	the	Pokémon,	with	each	co-occurrence	
contributing	one	edge	weight.	As	such,	the	total	edge	weight	represents	the	number	of	co-occurrences	
between	the	two	Pokémon	for	that	edge.	We	also	refined	some	values	for	time	and	location,	to	make	the	data	
more	consistent	and	in	a	usable	format	for	the	Gephi	Network	Science	Software	(10).	
	
The	results	of	our	co-occurrence	network	graphs	can	be	seen	in	Figures	3,	4,	and	5	below.	In	these	graphs,	the	
size	of	a	node	is	the	degree	of	co-occurrence	(how	many	different	Pokémon	co-occur	with	that	of	the	node),	
while	the	edge	weight	corresponds	to	the	frequency	of	co-occurrence	between	any	two	Pokémon.	The	layout	
algorithm	puts	Pokémon	that	occurred	frequently	closer	to	each	other,	and	ones	that	don’t	occur	frequently	
farther	apart.	The	color	represents	the	primary	type	of	the	Pokémon	(e.g.	fire,	water,	grass).	
	
	 	



Figure	3:		Overall	Network	Graph	for	Pokémon	Co-occurrence.	

	
	
In	the	center	of	the	graph	we	see	Pokémon	such	as	Pidgeotto,	Raticate,	and	Arbok,	which	are	Pokémon	that	
have	the	highest	co-occurrence.	In	other	words,	these	are	the	Pokémon	that	are	most	likely	to	spawn	with	
other	different	Pokémon.	When	playing	the	PokémonGo	game,	our	team	members	have	noticed	that	in	fact	
these	Pokémon	tend	to	co-occur	together.	Looking	at	Figure	3	we	see	that	there	is	a	large	number	of	water	
Pokémon	that	spawn	together.	This	is	what	players	would	expect	given	that	water	Pokémon	tend	to	spawn	
next	to	bodies	of	water.	We	also	notice	looking	at	Figure	3	above	that	Pokémon	of	opposite	types	don’t	seem	
to	co-occur	together.	According	to	the	makers	of	the	PokémonGO	game,	Pokémon	have	nests	and	tend	to	
spawn	nearby	them.	In	Figure	3	above,	it	seems	to	show	that	Pokémon	of	similar	types	tend	to	have	nests	
nearby	each	other	given	their	co-occurrence.	
	
	 	



Figure	4:	“Water”	Type	and	“Normal”	Type.	 Figure	5:	“Water”	Type	and	“Electric”	Type.	

	 	
	
	
In	Figure	4	above,	we	see	that	Pokémon	that	are	Normal	type	and	Water	type	are	the	most	likely	to	co-occur	
together.	This	finding	is	very	important	to	players	given	that	they	can	expect	Normal	type	Pokémon	to	be	the	
ones	most	likely	to	spawn	next	to	water	features	in	the	game.	If	a	player	were	interested	in	finding	Pokémon	
with	a	type	other	than	Normal	or	Water	they	should	not	be	next	to	water	features	in	the	game.	In	Figure	5,	we	
see	that	Electric	and	Water	type	Pokémon	are	least	likely	to	co-occur,	which	means	if	a	player	wants	to	find	
an	Electric	Pokémon	they	should	not	be	next	to	a	body	of	water.	This	lines	up	with	player	expectations	that	
Pokémon	of	opposing	types	will	not	spawn	together.	
	
	
	
	
	

Network	Measures	And	Network	Analysis	Summary	
	
In	addition	to	the	above	analyses,	our	team	used	Gephi	(10)	to	conduct	a	Weighted	Degree	Analysis	and	ran	a	
Community	Detection	Algorithm.	
	
For	the	Weighted	Degree	Analysis,	our	team	ran	the	average	weighted	degree	subroutine	in	Gephi,	and	found	
that	the	highest	values	were	for	basic	Pokémon	(e.g.	Pidgey	and	Weedle)	that	also	highly	co-occurred	
together.	This	initial	finding	supports	the	commonly	held	notion	that	basic	Pokémon	are	plentiful	and	easier	
to	find,	when	compared	with	more	evolved	forms.	Since	these	Pokémon	are	very	common,	it	would	follow	
that	they	also	co-occur	with	others.	
	
For	the	Community	Detection,	our	team	ran	a	community	detection	algorithm	several	times	in	Gephi	(10),	but	
could	not	find	a	common	attribute	between	the	nodes	in	each	cluster.	We	repeated	this	with	weighted	edges	
and	without	weighted	edges,	and	used	the	resulting	communities	in	our	prediction	model.	
	
	
	
	 	



Hadoop	MapReduce	
	
Hadoop	MapReduce	was	used	to	compute	a	new	network-derived	metric,	which	was	the	co-occurrence	
modularity	majority	(CMM).	This	metric	is	calculated	for	each	observation	in	the	following	way:	1)	for	each	
observation,	emit	the	modularity	class	associated	with	each	positive	or	present	co-occurrence.	Then,	2)	sum	
up	the	totals	of	each	modularity	class	for	each	observation,	and	3)	pick	the	modularity	class	with	the	largest	
representation	in	co-occurrence,	or	the	majority.	
	
For	example,	if	an	observation	has	a	Pokémon	that	co-occurred	with	3	others	(with	modularity	classes	2,	10	
and	2	respectively),	then	the	co-occurrence	modularity	majority	for	that	observation	is	2,	because	it	
represents	66.7%	of	the	co-occurring	Pokémon.	
	
	
Figure	6:		MapReduce	code	for	calculating	CMM.	The	mapper	emits	the	matching	modularity	class	for	each	
co-occurring	class	for	an	observation.	
	

	
	
	
	
The	first	function	defined	in	Figure	6,	id2mod(),	contains	an	array	that	contains	the	modularity	classes	for	
each	PokémonID:	The	Pokémon	with	id	1	would	have	the	index	0,	and	have	the	modularity	class	0.	This	
function	is	used	to	encapsulate	the	modularity	class	data	in	a	simple	to	use	way.	It	takes	in	the	PokémonID	-	1,	
and	outputs	the	correct	modularity	class.	The	array	values	themselves	were	produced	through	Gephi	network	
analysis.	
	
The	mapper	loads	in	the	co-occurrence	data,	where	each	line	is	an	observation,	and	emits	pairs	with	the	
observation	identifier	as	the	key	and	a	modularity	class	as	the	value.	A	special	value	is	emitted	if	the	
observation	had	zero	co-occurrence.	
	
	
	
	
	
	
	
	



Figure	7:		MapReduce	code	for	calculating	CMM.	The	reducer	combines	the	counts	and	aggregates	them	to	
find	the	most	common	modularity.	
	

	
	
	
	
The	reducer	takes	in	each	observation	id	as	a	key,	and	a	list	of	a	list	of	modularity	classes	(with	duplicates)	
that	describe	the	co-occurring	Pokémon’s	modularity	classes.	We	then	compute	the	majority	modularity	class	
after	adding	the	items	to	the	same	list.	The	output	of	this	reducer	is	a	comma-separated	file	that	includes	the	
majority	modularity	class	and	the	proportion	of	that	modularity	class	for	that	observation.	This	data	will	be	
fed	into	the	machine-learning	algorithm	described	in	the	coming	section.	
	
	
Prediction	Models	
	
The	main	prediction	models	we	used	in	this	project	are	Decision	Tree	and	Naive	Bayes.		
	
We	used	C5.0	(9)	and	the	Naive	Bayes	(8)	classifiers	in	R	Statistical	Software	(7)	and	set	the	predictor	as	
latitude,	longitude,	appearedDayOfWeek,	terrainType,	closeToWater,	weather,	temperature,	windSpeed,	
windBearing,	pressure,	population_density,	urban,	suburban,	midurban,	rural,	gymDistanceKm,	Type_1,	
group,	count	and	prop.	Overall,	we	have	19	variables	and	three	of	them	are	networking	features:	group,	count	
and	prop.	Our	training	data	makes	up	a	random	sample	of	70%	of	the	entire	dataset	and	testing	data	makes	
up	the	remaining	random	30%.	
	
Since	we	would	like	to	predict	the	occurrence	of	specific	Pokémon	(the	feature	‘Name’	in	our	dataset,	the	
baseline	should	be	the	proportion	of	the	most	common	Pokémon.	The	Pokémon	with	the	highest	frequency	is	
Pidgey,	which	makes	up	17.84%	of	all	of	the	Pokémon	that	appeared	in	our	dataset,	so	the	baseline	of	our	
prediction	models	to	beat	is	17.84%.		
	
We	tried	Naive	Bayes	(8)	and	Decision	Tree	(C5.0)	(9),	as	they	had	straightforward	implementations	that	we	
could	readily	integrate	into	our	project.	The	accuracy	of	Naive	Bayes	is	around	only	17%,	which	is	lower	than	
our	baseline,	so	we	decide	not	doing	any	deep	analysis	of	Naive	Bayes.	The	accuracy	of	the	C50	decision	tree	
is	about	43.75%	without	using	features	generated	by	using	network	analysis,	and	is	improved	to	45.59%	
after	applying	the	network	science	feature	representing	modularities.	The	possible	reason	is	that	the	many	of	
our	observations	share	similar	values	for	co-occurrence	modularity	majority,	which	is	due	to	the	data	set	
being	relatively	constrained	in	terms	of	size.	This	facet	of	the	analysis	could	be	improved	with	additional	data	
in	the	future,	because	that	could	balance	out	the	distribution	of	the	co-occurrence	modularity	majority.	
	
	
	
	



Table	2:	Top	20	Pokémon	with	highest	prediction	accuracy	(with	co-occurrence	modularity	majority).	
	

Name	 Cases	 False	Pos	 False	Neg	 Error	Rate	 Accuracy	

Clefairy	 2110	 40	 0	 0.00%	 100.00%	

Gastly	 1305	 77	 0	 0.00%	 100.00%	

Jynx	 373	 0	 0	 0.00%	 100.00%	

Dratini	 321	 43	 0	 0.00%	 100.00%	

Geodude	 1451	 407	 7	 0.48%	 99.52%	

Drowzee	 5517	 618	 67	 1.21%	 98.79%	

Mankey	 1174	 276	 26	 2.21%	 97.79%	

Weedle	 15766	 9057	 1090	 6.91%	 93.09%	

Sandshrew	 1169	 546	 88	 7.53%	 92.47%	

Pikachu	 304	 50	 28	 9.21%	 90.79%	

Growlithe	 1046	 464	 135	 12.91%	 87.09%	

Zubat	 5447	 2629	 726	 13.33%	 86.67%	

Magikarp	 4350	 2007	 650	 14.94%	 85.06%	

Pidgey	 29880	 13891	 5459	 18.27%	 81.73%	

Dewgong	 15	 16	 3	 20.00%	 80.00%	

Ekans	 2393	 968	 492	 20.56%	 79.44%	

Charmander	 431	 52	 99	 22.97%	 77.03%	

Krabby	 2457	 1155	 577	 23.48%	 76.52%	

Voltorb	 601	 176	 150	 24.96%	 75.04%	

Bellsprout	 2026	 780	 520	 25.67%	 74.33%	

	
	
The	Decision	tree	shows	different	results	for	different	Pokémon,	which	means	each	Pokémon	have	different	
accuracy	and	error	rate	based	on	those	inputting	variables.	In	fact,	in	real-life	conditions,	each	Pokémon	may	
have	different	possibilities	to	be	caught.	It	is	realized	that	our	accuracy	showed	that	not	just	the	common	one	
like	Pidgey,	Ekans,	Zubat,	Mankey	have	the	high	accuracy,	but	many	rare	one	like	Clefairy,	Dratini,	Pikachu	
also	have	high	accuracy	by	using	the	model.	Thus,	the	players	could	use	that	to	find	some	of	their	dream	
Pokémon	accurately.		
	



Table	3:	Top	20	Pokémon	with	lowest	prediction	accuracy	(with	co-occurrence	modularity	majority).	
 

Name	 Cases	 False	Pos	 False	Neg	 Error	Rate	 Accuracy	

Haunter	 71	 0	 71	 100.00%	 0.00%	

Snorlax	 41	 0	 41	 100.00%	 0.00%	

Clefable	 40	 0	 40	 100.00%	 0.00%	

Primeape	 39	 0	 39	 100.00%	 0.00%	

Sandslash	 32	 0	 32	 100.00%	 0.00%	

Dragonair	 27	 0	 27	 100.00%	 0.00%	

Hitmonchan	 21	 0	 21	 100.00%	 0.00%	

Vaporeon	 18	 0	 18	 100.00%	 0.00%	

Wigglytuff	 18	 0	 18	 100.00%	 0.00%	

Dragonite	 16	 0	 16	 100.00%	 0.00%	

Golem	 15	 0	 15	 100.00%	 0.00%	

Marowak	 14	 0	 14	 100.00%	 0.00%	

Poliwrath	 8	 0	 8	 100.00%	 0.00%	

Gengar	 6	 0	 6	 100.00%	 0.00%	

Ninetales	 6	 0	 6	 100.00%	 0.00%	

Venusaur	 6	 0	 6	 100.00%	 0.00%	

Weezing	 6	 0	 6	 100.00%	 0.00%	

Kabutops	 4	 0	 4	 100.00%	 0.00%	

Vileplume	 4	 0	 4	 100.00%	 0.00%	

Alakazam	 3	 0	 3	 100.00%	 0.00%	

Muk	 1	 0	 1	 100.00%	 0.00%	

 
We	also	list	the	top	20	Pokémon	with	lowest	prediction	accuracy.	The	common	thing	for	those	Pokémon	is	
they	all	have	few	individual	cases	according	to	current	dataset,	so	they	could	not	be	predicted	accurately	like	
those	Pokémon,	which	have	many	cases.	Also,	the	accuracy	could	be	improved	if	the	Pokémon	could	be	
clustered	once	preprocessing	the	datasets	by	the	variables	like	apperedTimeOfDay	because	some	of	those	
Pokémon	just	appeared	in	night	or	morning	of	the	day	or	they	are	set	rarely	appeared	in	the	world	because	
they	are	supposed	to	appear	once	evolvement	or	hatch	executed	by	players	originally.		



Table	4:		Model	attributes,	descriptions,	and	the	attribute	importance	for	C5.0	Decision	Tree.	
 

Attribute	 Description	
Attribute	
Importance	
for	C5.0	

Latitude	 Coordinates	of	a	sighting	(numeric)	 92.23%		

Longitude	 Coordinates	of	a	sighting	(numeric)	 88.47%	

Appeared	Day	of	
Week	

Day	of	the	week	that	the	sighting	occurred	(Monday,	Tuesday,	
Wednesday,	Thursday,	Friday,	Saturday,	Sunday)	 44.35%	

Terrain	Type	 Terrain	where	Pokémon	appeared	described	with	help	of	GLCF	
Modis	Land	Cover	(numeric)	 69.35%	

Close	to	water	 Did	the	Pokémon	appear	close	(100m	or	less)	to	water	(Boolean,	
same	source	as	above)	 43.95%	

Weather	

Weather	type	during	a	sighting	(Foggy	Clear,	PartlyCloudy,	
MostlyCloudy,	Overcast,	Rain,	BreezyandOvercast,	LightRain,	

Drizzle,	BreezyandPartlyCloudy,	HeavyRain,	
BreezyandMostlyCloudy,	Breezy,	Windy,	WindyandFoggy,	Humid,	

Dry,	WindyandPartlyCloudy,	DryandMostlyCloudy,	
DryandPartlyCloudy,	DrizzleandBreezy,	LightRainandBreezy,	
HumidandPartlyCloudy,	HumidandOvercast,	RainandWindy)		

68.43%	

Temperature	 Temperature	in	Celsius	at	the	location	of	a	sighting	(numeric)	 40.24%	

Wind	Speed	 Speed	of	the	wind	in	km/h	at	the	location	of	a	sighting	(numeric)	 35.62%	

Wind	Bearing	 Wind	direction	(numeric)	 32.58%	

Pressure	 Atmospheric	pressure	in	bar	at	the	location	of	a	sighting	(numeric)	 57.21%	

Population	Density	 What	is	the	population	density	per	square	km	of	a	sighting	
(numeric)	 70.28%	

Urban	 How	urban	is	the	location	where	the	Pokémon	appeared	(Boolean,	
built	on	Population	density,	>800	for	urban)	 16.20%	

Suburban	 How	urban	is	the	location	where	the	Pokémon	appeared	(Boolean,	
built	on	Population	density,	>=400	and	<800	for	subUrban)	 14.37%	

MidUrban	 How	urban	is	the	location	where	the	Pokémon	appeared	(Boolean,	
built	on	Population	density,		>=200	and	<400	for	MidUrban)	 15.25%	

Gym	Distance	Km	 How	far	is	the	nearest	gym/PokéStop	in	km	from	a	sighting	 47.62%	

Type	1	 Each	Pokémon	has	a	type,	this	determines	weakness/resistance	to	
attacks	 100%	

Group	 Modularity	Group	 66.68%	

Count	 Observations	of	Pokémon	Occurrences	in	the	Group		 66.62%	

Prop	 Proportion	of	the	most	common	Pokémon		 51.58%	

 
 



Results	and	Evaluation	
	 	
Our	C5.0	Decision	Tree	model	has	significantly	better	performance	than	the	Naive	Bayes	model.	Compared	to	
the	majority	baseline	(around	17%),	the	C5.0	model	has	an	overall	accuracy	of	42%	without	network	metrics.	
Including	the	network	metrics	(CMM)	allowed	us	to	boost	our	model	accuracy	by	2%.	Interestingly,	this	
model	does	a	better	job	predicting	some	of	the	rare	Pokémon	than	it	does	for	the	common	Pokémon.	This	
finding	makes	sense,	the	common	Pokémon	are	more	likely	to	contain	inconsistent	features,	since	they	spawn	
in	more	varied	locations.		All	of	these	factors	result	in	our	models	having	less	specific	decision	rules.		
	
In	this	model,	latitude	and	longitude	appear	to	be	among	the	most	important	attributes	of	the	ones	we	tested.	
These	two	attributes	might	somewhat	reduce	the	importance	of	other	geographical	attributes,	such	as	
“Urban”,	“Gym	Distance	Km”,	and	etc.,	since	each	latitude	and	longitude	pair	contains	its	unique	geographical	
information	which	involve	other	geographical	feature	presented	as	other	attributes.	
	
	
	
	

Conclusions	(Conclusions	and	Future	Directions)	
	
The	top	10	attributes	impact	the	ability	to	catch	a	Pokémon	can	be	categorized	into	3	groups:	Pokémon,	
Player,	and	Place.	For	the	Pokémon,	the	most	important	attributes	are	the	type,	modularity	group	and	
proportion.	It	is	worth	noting	that	modularity	group	and	proportion	were	the	network	metrics	that	we	
derived	ourselves.	For	the	player,	the	population	of	the	city	seems	to	be	the	most	important	feature.	The	
bigger	a	city’s	population,	the	greater	the	opportunity	for	the	player	to	catch	the	Pokémon	they	are	looking	
for.	For	place,	in	the	current	stage,	the	key	attributes	are	latitude	and	longitude,	which	are	very	high-
resolution	features	that	also	incorporate	some	of	the	other	features	we	used,	such	as	distance	to	water.	
	
These	findings	confirm	certain	long	held	beliefs	in	the	Pokémon	community,	such	as	co-occurring	Pokémon	
often	have	types	that	are	related	and	that	the	population	of	a	city	and	the	geographic	features	are	important	
variables	that	impact	the	spawn	rates	of	Pokémon.	
	
For	the	future,	we	hope	to	have	more	detailed	data	such	as	distance	from	landmarks	or	the	presence	or	
absence	of	a	special	in	game	event	which	tend	to	occur	from	time	to	time,	which	are	factors	that	are	known	to	
influence	the	chance	a	player	has	to	catch	a	Pokémon.		However,	the	current	dataset	we	used	contains	
300,000	rows	of	data	collected	over	a	single	week.	These	constraints	limit	the	amount	of	information	we	have	
about	the	time	dimension	of	spawns	and	also	events.	

	
	
	
	
	
	
	 	



References	
	
	
1		 80	Amazing	PokémonGo	Statistics	

Craig	Smith	-	https://expandedramblings.com/index.php/pokemon-go-statistics/	
	
	

2	 Grassroots	Pokémon	GO	Network	
	 https://thesilphroad.com/	
	
	
3	 Pokémon	GO's	Largest	Grassroots	Network:	The	Silph	Road	•	r/TheSilphRoad	
	 https://www.reddit.com/r/TheSilphRoad/	
	
	
4	 Pokémon	Go	explained	with	Watson	Analytics	
	 https://www.ibm.com/blogs/business-analytics/pokemon-go-explained-with-watson-analytics/	
	
	
5	 Predict’em	All.		
	 SemionKorchevskiy	-	https://www.kaggle.com/semioniy/predictemall	
	
	
6	 Pokémon	with	stats.	
	 Alberto	Barradas	-	https://www.kaggle.com/abcsds/pokemon/data	
	
	
7	 R	Core	Team	(2017).	R:	A	language	and	environment	for	statistical	computing.	R	Foundation	for	
	 Statistical	Computing,	Vienna,	Austria.	URL	https://www.R-project.org/.	
	
	
8	 David	Meyer,	Evgenia	Dimitriadou,	Kurt	Hornik,	Andreas	Weingessel	and	Friedrich	Leisch	(2017).		
	 e1071:	Misc	Functions	of	the	Department	of	Statistics,	Probability	Theory	Group	(Formerly:	E1071),	
	 TU	Wien.	R	package	version	1.6-8.	https://CRAN.R-project.org/package=e1071	
	
	
9	 Max	Kuhn,	Steve	Weston,	Nathan	Coulter	and	Mark	Culp.	C	code	for	C5.0	by	R.	Quinlan	(2015).	C50:	
	 C5.0	Decision	Trees	and	Rule-Based	Models.	R	package	version	0.1.0-24.	https://CRAN.R-
	 project.org/package=C50	
	
	
10	 The	Open	Graph	Viz	Platform	
	 https://gephi.org/	
	


